

# VT 1010 (R 10)

mikroprogramozott digitális kisszámítógép



# Hungary's Early Years in the Ryad

## Máté Szabó Carnegie Mellon University

HaPoC Pisa, 2015

# Ryad

- By the mid 1960s Eastern European countries lagged 5-10 years behind the West in computer technologies.
- In 1968, Alexei Kosygin<sup>1</sup> initiated a cooperation among the Comecon<sup>2</sup> countries to develop a Unified System of Electronic Computers (Ryad, ES or EC).
- Upward-compatible series of computers by cloning of IBM's 360 system (introduced in 1964).
- Different countries develop different members of the series and peripherals.
- Hungary makes the smallest member of the series, the R10, which *did not* have a corresponding IBM 360 computer.

<sup>&</sup>lt;sup>1</sup>Chairman of the Council of Ministers of the Soviet Union <sup>2</sup>Council for Mutual Economic Assistance (also CEMA or CMEA)

# Outline

- 2nd generation computers (developed) in Hungary before Ryad:
  - TPA 1001
  - EMG 830
- Economic and historical context.
- Institutions of Ryad in Hungary.
- SZKI (Institute for the Coordination of Computing Technology).
- Manufacturing the R10.

# TPA 1001 KFKI (Central Research Institute for Physics)



# TPA 1001

- TPA = Stored Program Analyser (Tárolt Programú Analizátor).
- Clone of DEC PDP-8 mini computer. (Compatible with it)
- Developed in 1966-1968 at KFKI<sup>3</sup> under the direction of Zsolt Náray.
- KFKI was not allowed to purchase one as a consequence of the COCOM<sup>4</sup> embargo.
- DEC published and made its Small Computer Handbook available for free.
- Different versions in production until 1990. (TPA 70 independent development; TPA 1100s are PDP-11 and Vax 11 clones, ~600 TPA 1001, ~80 TPA 70, ~800 TPA 1100s were sold)

<sup>&</sup>lt;sup>3</sup>Central Research Institute for Physics, Központi Fizikai Kutatóintézet. <sup>4</sup>Coordinating Committee for Multilateral Export Controls.

# EMG 830 DIGITÁLIS ELEKTRONIKUS SZÁMÍTÓGÉP

Az EMG 830 digitális elektronikus számítógép bár műszaki felépítésében a második generációs gépek csoportjába tartozik, szervezésében számos harmadik generációs tulajdonsággal rendelkezik. Ezek a tulajdonságok lehetőséget nyújtanak a felhasználónak arra, hogy a számítógépet optimálisan üzemeltesse mind az adatfeldolgozás, mind a tudományos-műszaki számítások, minda folyamatirányítás területén.

Programkönyvtárának állandó fejlesztése az üzembe helyezés után is újabb és újabb lehetőségekkel bővíti a felhasználhatóságot.

A programozás SIMPLE assembler, EMG AUTOKÓD szimbolikus programnyelveken, a későbbiek során ALGOL és FORTRAN nyelven is végezhető.

A számítógép szervezése és viszonylag gyors működése, lehetővé teszi a gépen a multiprogramozást, és a folyamatirányításban nélkülözhetetlen valós idejű (real time) program futtatást is.

Programkönyvtára tartalmazza

- a különböző szubrutinokat (perifériakezelés, rendező program, elemi függvények lebegővesszős és dupla szóhosszúságú műveletei stb.)
- hibakereső tesztprogramokat
- műszaki és ügyviteli programokat, valamint
- fenti programnyelvek fordítóprogramjait.



A számítógép felhasználását nagyban elősegíti, hogy az érdeklődőkkel való közvetlen kapcsolat útján az Elektronikus Mérőkészülékek Gyára Számítógép-értékesítési Főosztálya készséggel áll a felhasználó rendelkezésére.

A géppel való megismerkedés céljából az EMG különböző szintű tanfolyamokat rendez programozók, operátorok részére.

# EMG 830

- Independently developed and designed computer family.
- At EMG<sup>5</sup> in 1964-1968 under the direction of Árpád Klatsmányi.
- Its architecture is typified by the modularity and the buses.
- 25000 operations/second, maximum main memory capacity: 32 Kword (21 or 24 bit/word, depending on the model).
- SIMPLE assembly language, Autocode and later FORTRAN and COBOL compilers. (ALGOL planned but never realized)
- ~15 of them were produced between 1968-1970.
- EMG 840 with integrated circuits, developed in 1972-1974. (Only one ended up in commercial use)

<sup>&</sup>lt;sup>5</sup>Factory for Electronic Measuring Instruments, Elektronikus Mérőkészülékek Gyára.

## Hostile atmosphere

- Stalinist SU was hostile towards cybernetics and computers: "giant-scale campaign of mass delusion of ordinary people" pseudo-science whim of fashion of the West
- The attitude in Hungary in the 1960s was not as drastic, but:

-neither TPA 1001<sup>6</sup> nor EMG 830<sup>7</sup> was called a computer

-naming the computer society (founded in 1968) after von Neumann was suspicious

-widely believed on the governmental level that computers cannot be profitable in the civil and economic sphere.

<sup>&</sup>lt;sup>6</sup>Stored program analyser.

<sup>&</sup>lt;sup>7</sup>Process controlling module system.

New Economic Mechanism

- Economic reform introduced on January 1, 1968.
- A limited, artificial internal market is introduced.
- Larger freedom is given to enterprises and the 'command' or 'planned economy' is relaxed to a large extent.
- "[E]nterprises were left to their own devices in deciding what products to manufacture, consistent with their market position and demand."
- "[T]he character of state ownership was not affected at all: top managers of state enterprises continued to be officials of the state, appointed and dismissed by the ministries or local authorities."
- Leads to an "interest in numbers" (demand for computers).

#### Looking for a License (1967-1968)

- In the second half of the 1960s the leaders of OMFB, National Committee of Technological Development<sup>8</sup> were aware that computers will play an increasing role in society.
- In 1967-1968 OMFB decided to acquire a computer license and cautiously started to look for a partner among Western countries: Great-Britain, France, West Germany, Italy, Sweden, and Denmark
- Early 1968: meetings begin between the French Délégué à l'Informatique and OMFB and the newly established CII<sup>9</sup> and EMG about the license of the CII 10010 computer (and its updates).
- Lengthy vacillation on governmental level, due to the general aversion towards computers. As a consequence, the license was not signed in 1968.

<sup>&</sup>lt;sup>8</sup>Árpád Kiss chairman (with ministerial rank) and János Sebestyén vice chairman. <sup>9</sup>Compagnie International pour l'Informatique.

# Ryad - Unified System



# Ryad

- Kosygin's letter to Comecon countries, early 1968.
- Intergovernmental Commission on Computing Machinery (ICCM) is founded. It is independent from the Comecon bureaucracy.

In Hungary:

- OMFB<sup>10</sup> founds SZTB, Interdepartmental Committee on Computing Technology.
- SZTB represents Hungary in ICCM.
- SZTB initiates and directs the Central Development Program for Computing Technology (SZKFP).

<sup>&</sup>lt;sup>10</sup>National Committee of Technological Development.

# Ryad in Hungary

- Hungary wants to build the smallest computer, as it has experience with:
  - -PDP 8/TPA 1001, mini computer
  - -EMG 830, small to mid size computer
- Negotiations about CII 10010 mini computer already.
- Hungary is allowed to build the smallest computer.
- EMG buys the license on 24th of May 1969.
- The goal is to get the CII 10010 based computer accepted as a member of Ryad.

(i.e. a legal, license based computer instead of an IBM clone)

# Ryad in Hungary

- SZKI, Institute for the Coordination of Computing Technology is founded late 1968. The main institution of Ryad in Hungary.
- NOTO-OSZV,<sup>11</sup> National Enterprise of Computer Technology, founded in 1973.

-imports, distributes and maintains the other Ryad computers

- SZÁMOK,<sup>12</sup> Computer Education Centre:
  - -instructors trained in Frankfurt in 1970 (6-9 months) in a CDI<sup>13</sup> program

-around 7000 people attend courses annually -46.000 textbooks (12-14 titles) published annually

- INFELOR: operation systems; MOM:<sup>14</sup> peripherals
- <sup>11</sup>Országos Számítógéptechnikai Vállalat.
- <sup>12</sup>Számítástechnikai Oktató Központ

<sup>13</sup>Control Data Institute, a vocational school created by Control Data Corporation (CDC).
 <sup>14</sup>Hungarian Optical Works.

# SZKI<sup>15</sup>

- Náray, former head of the TPA program at KFKI becomes the CEO of SZKI.
- Náray represents Hungary in the Council of Chief Designers.
- Although the primary goal was developing and coordinating the production of the R10, the SZKI attended to research and innovation tasks as well.
- 40% of the CII license was covered by software and hardware development (of CII 10010 and Mitra 15).
- SZKI has to finance itself from 1969. (effect of NEM)
- Náray (surprisingly) achieves that SZKI can keep 50% of its Western currency income. (effect of NEM)

<sup>&</sup>lt;sup>15</sup>Institute for the Coordination of Computing Technology.

# SZKI<sup>15</sup>

- Units of the institute are called laboratories:
  - -Hardware Laboratory
  - -Hardware Systems Engineering Laboratory
  - -Computer Laboratory (Computer Center)
    - -Software Application Laboratory
    - -Software Application Development Laboratory
  - -Design Automatization Laboratory
  - -Software Systems Engineering Laboratory
  - -Mathematical Laboratory
  - -Theoretical Laboratory
- Laboratories are almost independent, have different projects.
- Laboratories have their on budget and have to finance themselves.

<sup>&</sup>lt;sup>15</sup>Institute for the Coordination of Computing Technology.

# SZKI<sup>15</sup>

- Computer Center buys a Siemens 4004/45 computer in 1969, it was partially payed for in software developing commissions. This lead to a long-term cooperation between Siemens and SZKI as a software developer.
- Work for Ericsson, Messerschmidt, Kienzle.
- ~1974-75 SZKI had a Siemens 4004/150, which was modified to a 4004/151 to test the new Siemens time-sharing system for the first time (first time-sharing in Hungary as well).
- From late 1970s, image processing at Mathematical Laboratory (license plate recognition, space program etc).
- Automatization of the main East-West railway line of Hungary and carriage administration.

<sup>&</sup>lt;sup>15</sup>Institute for the Coordination of Computing Technology.

# Manufacturing the R10

#### CII Mitra 15



# R 10 (VT 1010)



#### Manufacturing the R10

- In 1970 employees of EMG were trained at CII in France.
- The first computers were assembled, using CII parts, under the EMG code 810 (based on CII 10010).
- By the end of 1970 EMG was ready to manufacture the 810 and produced a trial series that passed the quality control of CII.
- Then suddenly the license was passed over to VIDEOTON on 4th of December 1970 by a governmental decision. (sources conflict on the reason)
- Árpád Klatsmányi, head of the computer development at EMG got dismissed.
- The computer development program at EMG shrunk and was terminated a couple years later.

# VIDEOTON

- No experience with computer technologies before 1968.
- Main premises in Székesfehérvár.
- VIDEOTON Pilot Plant 1969-1970.
- VIFI, VIDEOTON Development Institute

   founded in 1971 in Budapest
   by incorporating EFKI, Electronic and Precision Mechanical Research Institute into VIDEOTON.
- VIDEOTON Computer Factory is founded in 1971.





# VIDEOTON R10

- VT 1010B based on CII 10010 (same as EMG 810), 1971.
- R10 = VT 1010 = EC 1010 = ES 1010 based on Mitra 15<sup>16</sup> introduced in 1972 at Hungexpo, Budapest International Fair.

(The Mitra 15 was introduced at the Sicob<sup>17</sup> in 1971 with the presence and assistance of SZKI employees.)

- The operating system is developed by INFELOR, called VIDOS (VIDEOTON Operating System).
- (The 2nd series of Ryad were IBM 370 clones, the Hungarian R15 computer was an IBM 370/115-125 clone.)

<sup>&</sup>lt;sup>16</sup>New version of CII 10010, originally called as 10010A.
<sup>17</sup>Salon des industries et du commerce de bureau

# VIDEOTON Peripherals



VT 340

## **VIDEOTON** Peripherals





- VT 340 is an alphanumerical display ( $16 \times 80$ ) developed by VIDEOTON independently, introduced in 1971.
- 600 were sold in 1973.
- From 1971-1989 VIDEOTON sold ~90.000 displays, 40% on USD (\$) based markets.

#### **VIDEOTON** Peripherals

VIDEOTON lineprinters:

based on Data Products license:<sup>18</sup>

- VT 24000 from 1972, 80 characters/line, 1110 lines/min
- VT 25000 from 1974, 132 characters/line, 600 lines/min

(ES 7184/80 and 132)

independent, own development:

• VT 27000 from 1976, 136 characters/line, 900 lines/min

#### <sup>18</sup>Again, legal, Western license.

#### VIDEOTON Offices

After sale offices outside Hungary (established 1972-1975):

- Moscow, Kiev, Minsk (Soviet Union)
- Prague, Bratislava (Czechoslovakia)
- Warsaw (Poland)
- East Berlin, Erfurt (East Germany)
- Sofia (Bulgaria)
- Belgrade, Zagreb (Yugoslavia)
- Helsinki (Finland)

# Standard R10 setting



# Standard R10 setting<sup>19</sup>

Console typewriter, ES-7070, Czechoslovakia Magnetic tape computer data storage, ES-5052, Bulgaria and ES-5060 Hungary

Changable magnetic disc driver, ES-5511, Soviet Union Tape drive, ES-5010, Soviet Union

- Magnetic tape storage, VT-42500, Hungary
- Punch card reader, ES-6022 = VT CR600, Hungary

Punch tape reader, CT-2000, Poland

Paper tape puncher, ES-7191 = MOM PerfoMOM, Hungary

Paper tape puncher, ES-7122, Poland

Lineprinter, ES-7184/80 and 132 (characters per line) =

= VT 24000 and 27000, Hungary

Alphanumeric display, ES-7168 = VT 340, Hungary

 $<sup>^{19}</sup>$ ES = EC in coding of Ryad computers. VT is the code of VIDEOTON products.

# **Thank You for Your Attention!**